Question

How can I use a case statement with decimals in Tidyverse?

Answer and Explanation

Using a case statement with decimals in Tidyverse, specifically with dplyr::case_when(), requires careful handling due to the nature of floating-point numbers. Direct equality comparisons (e.g., x == 1.5) can be unreliable because of how decimals are stored in memory. Instead, you should use a range or a tolerance-based approach.

Here's how you can effectively use case_when() with decimals:

1. Using Ranges:

- Define ranges for your decimal values. This is the most robust method for handling decimals in case_when().

- Example:

library(dplyr)

data <- data.frame(values = c(1.2, 1.5, 1.8, 2.1, 2.5))

data_modified <- data %>%
  mutate(
    category = case_when(
      values >= 1.0 & values < 1.5 ~ "Low",
      values >= 1.5 & values < 2.0 ~ "Medium",
      values >= 2.0 & values < 2.5 ~ "High",
      TRUE ~ "Other"
    )
  )

print(data_modified)

- In this example, we categorize values based on ranges, which avoids direct equality comparisons.

2. Using a Tolerance:

- If you need to check for values "close to" a specific decimal, use a tolerance value.

- Example:

library(dplyr)

data <- data.frame(values = c(1.499, 1.5, 1.501, 2.0, 2.5))

tolerance <- 0.01

data_modified <- data %>%
  mutate(
    category = case_when(
      abs(values - 1.5) <= tolerance ~ "Around 1.5",
      abs(values - 2.0) <= tolerance ~ "Around 2.0",
      TRUE ~ "Other"
    )
  )

print(data_modified)

- Here, we check if a value is within a certain tolerance of 1.5 or 2.0.

3. Avoid Direct Equality:

- Avoid using direct equality (==) with decimals in case_when(). It can lead to unexpected results due to floating-point representation issues.

4. Consider Rounding:

- If your decimals have a specific precision, you can round them before using case_when(). This can simplify your conditions.

- Example:

library(dplyr)

data <- data.frame(values = c(1.234, 1.567, 1.890, 2.123, 2.567))

data_modified <- data %>%
  mutate(
    rounded_values = round(values, 1),
    category = case_when(
      rounded_values == 1.2 ~ "1.2",
      rounded_values == 1.6 ~ "1.6",
      rounded_values == 1.9 ~ "1.9",
      TRUE ~ "Other"
    )
  )

print(data_modified)

- In this case, we round the values to one decimal place before using case_when().

By using ranges, tolerances, or rounding, you can effectively use case_when() with decimal values in Tidyverse, avoiding common pitfalls associated with floating-point comparisons.

More questions