Question

How can I change the algorithm in function of the call context in Python?

Answer and Explanation

In Python, you can modify the algorithm's behavior based on the context of the call using several techniques. These involve checking various aspects of the environment at runtime.

1. Using Function Arguments:

- The most straightforward way is to use function arguments to control the execution path. You can have a parameter, often a string or boolean, to select different algorithms or processing logic.

- Example:

def process_data(data, mode="algorithm_a"):
  if mode == "algorithm_a":
    # Logic for algorithm A
    result = [x2 for x in data]
  elif mode == "algorithm_b":
    # Logic for algorithm B
    result = [x2 for x in data]
  else:
    raise ValueError("Invalid mode specified")
  return result

print(process_data([1,2,3], "algorithm_a")) #Output: [2, 4, 6]
print(process_data([1,2,3], "algorithm_b")) #Output: [1, 4, 9]

2. Using Global Variables or Configuration:

- You can utilize global variables or a configuration object to determine the processing logic. This is useful when certain global settings influence the algorithm.

- Example:

CONFIG = {"mode": "fast"}

def process_data(data):
  if CONFIG["mode"] == "fast":
    # Logic for fast mode
    result = [x2 for x in data]
  elif CONFIG["mode"] == "slow":
    # Logic for slow mode
    result = [x2 for x in data]
  else:
    raise ValueError("Invalid mode specified")
  return result

print(process_data([1,2,3])) #Output: [2, 4, 6]
CONFIG["mode"] = "slow"
print(process_data([1,2,3])) #Output: [1, 4, 9]

3. Checking the Call Stack (Advanced):

- You can inspect the call stack using the inspect module. This lets you change the algorithm based on the functions that called the current function. While powerful, it's generally more complex and should be used sparingly.

- Example:

import inspect
def process_data(data):
  caller_frame = inspect.currentframe().f_back
  caller_name = caller_frame.f_code.co_name

  if caller_name == 'function_a':
  # Logic specific to function_a
    result = [x2 for x in data]
  elif caller_name == 'function_b':
  # Logic specific to function_b
    result = [x2 for x in data]
  else:
    result = [x+1 for x in data]
  return result

def function_a(data):
  return process_data(data)

def function_b(data):
  return process_data(data)

print(function_a([1,2,3])) #Output: [2, 4, 6]
print(function_b([1,2,3])) #Output: [1, 4, 9]
print(process_data([1,2,3])) # Output: [2, 3, 4]

4. Using Classes and Inheritance:

- If you are working with more complex situations, consider implementing different algorithms as methods within a class hierarchy. This promotes code organization and polymorphism.

- Example:

class AlgorithmBase:
  def process(self, data):
    raise NotImplementedError("Implement process method!")

class AlgorithmA(AlgorithmBase):
  def process(self, data):
    return [x2 for x in data]

class AlgorithmB(AlgorithmBase):
  def process(self, data):
    return [x2 for x in data]

def execute_algorithm(algorithm, data):
  return algorithm.process(data)

algorithm_a = AlgorithmA()
algorithm_b = AlgorithmB()

print(execute_algorithm(algorithm_a, [1, 2, 3])) # Output: [2, 4, 6]
print(execute_algorithm(algorithm_b, [1, 2, 3])) # Output: [1, 4, 9]

Choosing the appropriate method depends on your specific requirements for flexibility, complexity, and maintenance. Function arguments are the most simple and clear, while using classes and inheritance provides robust solutions for more complex problems.

More questions